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Abstract

We propose an electric resistivity inversion method that is similar to the reverse time migration technique applied to
seismic data. For calculating model responses and inversion, we use the mixed finite-element method with the standard
P1 � P0 pair for triangular decompositions, which makes it possible to compute both the electric potential and the electric
field vector economically. In order to apply the adjoint state of the Poisson equation in the resistivity inverse problem, we
introduce an apparent electric field defined as the dot product between the computed electric field vector and a weighting
factor and then defining a virtual source to compute the partial derivative of the electric field vector. We exploit the adjoint
state (the symmetry of Green�s function) of matrix equations derived from solving the Poisson equation by the mixed finite-
element method, for the calculation of the steepest descent direction of our objective function. By computing the steepest
descent direction by a dot product of backpropagated residual and virtual source, we can avoid the cumbersome and
expensive process of computing the Jacobian matrix directly. We calibrate our algorithm on a synthetic of a buried con-
ductive block and obtain an image that is compatible with the limits of the resistivity method.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Electric resistivity inversion has been used as an interpretation tool for generating subsurface structures
from voltage differences measured on the surface in a dc survey. Geophysicists and applied mathematicians
have studied electric resistivity inversion techniques using integral equation [1], alpha center [22], Born approx-
imation [13], finite-difference [6,37], finite-element [5,9,26], boundary-element methods [14,17,35] and multi-
scale methods [21]. In particular, Pain et al. [20] proposed the inverse algorithm for 3D anisotropic media.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.09.007

* Corresponding author. Tel.: +82 2 880 6271; fax: +82 2 887 4694.
E-mail addresses: tyha@math.snu.ac.kr (T. Ha), pyunsj@gpl.snu.ac.kr (S. Pyun), css@model.snu.ac.kr (C. Shin).

mailto:tyha@math.snu.ac.kr
mailto:pyunsj@gpl.snu.ac.kr
mailto:css@model.snu.ac.kr


172 T. Ha et al. / Journal of Computational Physics 214 (2006) 171–186
A majority of these methods are equally valuable for solving other geophysical problems such as the inversion
of electromagnetic and seismic data by constructing appropriate objective functions. Although global optimi-
zation schemes such as simulated annealing and genetic algorithms are frequently used in geophysical prob-
lems, geophysicists still favor local optimization methods since local optimization methods are
computationally efficient compared with global search methods. Many applied mathematicians can also apply
these methods in the medical fields with electric impedance tomography [2,4,7,8].

This study focuses on resistivity inversion using local optimization, especially the steepest descent method.
In general, the local minimization problems such as Gauss–Newton method and steepest descent method are
the most widely used for its fast convergence, and the steepest descent direction is calculated most efficiently
with the Jacobian computed from the reciprocity theorem of Green function in conductivity problem
[26,31,32,36]. The reciprocity approach is a very efficient method for constructing the Jacobian or gradient
and Shin et al. [28] also applied this method to seismic waveform inversion. At the same time, Gauss–Newton
method has a disadvantage in that it requires a large core memory to save all of the Green functions corre-
sponding to every source and receiver position and incurs the large overhead computing cost to calculate
the Jacobian matrix [28].

Lailly [12], Tarantola [29] and Pratt et al. [23] developed a novel way of determining the steepest descent
direction for seismic inversion in reverse time migration. Pratt et al. [23] predicted that the seismic wave-
form inversion algorithm could be easily applied to dc and electromagnetic problems. In this study, we pro-
pose an electric resistivity inversion algorithm that is similar to a recent seismic inversion algorithm [28,23]
that employs the adjoint state of the wave equation. The backpropagation algorithm of seismic inversion
and reverse time migration, in general, uses the adjoint state of the forward modeling operator of the wave
equation. However, in a dc resistivity problem solving Poisson�s equation by standard finite-element or fi-
nite-difference method, we have found a resulting capacity matrix which cannot be directly used to back-
propagate residual electric field vector as we backpropagate the residual in the seismic waveform inverse
problem. To circumvent this problem, we must define an equivalent apparent electric field measurement,
and compute both electric potential and electric field vector using a mixed finite-element method. In this
way, we can build a new objective function as an l2-norm of residuals between measured apparent resistiv-
ity and modeled apparent resistivity, thereby allowing us to employ the adjoint state of mixed finite-element
method for the implicit computation of the steepest descent direction without computing the Jacobian
matrix.

In the following sections, we will introduce a governing equation used for electric resistivity modeling and
explain the mixed finite-element method. Next, we will explain the steepest descent method for our electric
resistivity inversion technique on the basis of a matrix formalism (adjoint state) of the Poisson equation that
is obtained in the process of solving for both electric potential and apparent electric field by the mixed finite-
element method. Finally, we will generate subsurface images using our inversion algorithm for several block-
anomaly models with a dipole–dipole array.

2. The governing equation and mixed finite-element method

2.1. Mathematical modeling

In an isotropic and conductive media, the equations describing the response due to a point current source
Is(x,z) are expressed as
rV ðx; zÞ ¼ �qðx; zÞEðx; zÞ; ð1aÞ
r � Eðx; zÞ ¼ I sðx; zÞ; ð1bÞ
where V(x,z) is the electric potential, E(x,z) is the electric field vector, and q(x,z) is the resistivity function
which is strictly defined as positive value:
0 < m 6 qðx; zÞ;

where m is the positive constant. Let us restrict the whole space to a conductive half space X, where X is
the bounded and open subset of R2 having a piecewise continuous boundary C (=oX). C1 denotes the
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ground surface (z = 0) and C2 = oX/C1 (Fig. 1). The governing first-order system for the electric resistivity
problem in the domain X can be expressed by the following Poisson�s equation with mixed boundary con-
ditions [6].
Fig. 1.
C2 is a
rV ðx; zÞ ¼ �qðx; zÞEðx; zÞ in X; ð2aÞ

r � Eðx; zÞ ¼ I
DS

dðx� xsÞdðz� zsÞ in X; ð2bÞ

n � Eðx; zÞ ¼ 0 on C1; ð2cÞ
V ðx; zÞ ¼ 0 on C2; ð2dÞ
where I is the current in amperes, (xs,zs) is the coordinate of point source, DS is the elemental area
about the charge-injected point, and n is the outer normal vector at the boundary of X. The boundary
condition at the ground surface C1 is equivalent to the Neumann boundary condition for the electric
potential
oV
on

����
C1

¼ 0. ð3Þ
Though the Dirichlet boundary condition used in Eq. (2d) is only valid at infinity, Eq. (2d) can be used if the
domain is far away from the sources [19]. The Robin boundary condition as well as the Dirichlet and Neu-
mann boundary conditions can also be used [6].

2.2. Mixed finite-element method

As shown in Fig. 2, we divide the region by the triangular element. The mixed finite-element equation with
P1–P0 pair for triangular elements [3] for dc problem is
Ku ¼ r; ð4Þ
Domain where electric resistivity exploration is experimented. X is a computational domain, C1 is the ground surface boundary and
n artificial boundary.

Fig. 2. Two-dimensional mesh and triangular elements in X.
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with
Fig. 3.
while w
distanc
K ¼
A B

BT 0

� �
;

where A is the mass matrix, B is the stiff matrix, u is the finite-element approximate solutions for the electric
potential and electric field vector, and r = [0 s]T is the source vector, which the vector s is induced by the source
function in Eq. (2). And
A ¼
Z
X
qðx; zÞNTN ds;

B ¼
Z
X
NTM ds;
where N is a row vector of shape function for electric field vector and M is the gradient vector for electric
potential. We know that K is the symmetric capacity matrix because A, B are symmetric. Let u = [e v]T which
the vectors e and v are the approximate solutions of electric field vector and electric potential, respectively.
Then we obtain the electric field vector e and the electric potential v from Eq. (5)
BTA�1Bv ¼ �s; ð5aÞ
e ¼ �A�1Bv. ð5bÞ
Since we choose the constant shape function for electric field vector, we note that A is a diagonal matrix. The
computing time required for obtaining electric field vector and electric potential is compatible with that re-
quired when we use other numerical methods (finite-element or finite-difference method). Eq. (4) can be solved
by LU decomposition for two-dimensional problems, but for three-dimensional problems, we can use the iter-
ative incomplete Cholesky conjugate method [25,34] to minimize the computer memory requirement and com-
putation time.
3. Apparent electric field

3.1. Dipole–dipole array

In the dipole–dipole array frequently used in resistivity surveys as shown in Fig. 3, direct current I is
passed into the subsurface at a dipole (C1,C2), while we measure the electric potential difference DV at the
other dipole (P1,P2). The apparent resistivity qa is defined in terms of both the current I and voltage DV
as
qa ¼ G
DV
I

; ð6Þ
where 1/G is the geometric factor and G is expressed in the three-dimensional space as
G ¼ pnðnþ 1Þðnþ 2Þa; ð7Þ
where n is the electrode separation index.
Dipole–dipole array in two-dimensional dc resistivity exploration. Direct current I is passed into the subsurface at a dipole (C1,C2),
e measure the electric potential difference DV at the other dipole (P1,P2). Here n is the electrode separation index and a is the
e between dipole.
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3.2. Apparent electric field at the flat ground surface

In a general resistivity inversion using the steepest descent method, we generally construct an objective
function based on apparent resistivity and determine the steepest descent direction by computing the Jacobian
matrix (described as partial derivatives of apparent resistivity with respect to a model parameter (resistivity)).
On the other hand, in the case of using the backpropagation algorithm of the seismic inverse problem, the
steepest descent direction is computed implicitly by using the adjoint state of the forward modeling operator
[23]. In designing the resistivity inversion algorithm using the backpropagation technique, we first try to solve
the inverse problem by backpropagating the electric potential difference of the Poisson equation, but we can-
not use the adjoint state of the matrix formalism with the electric potential difference, since it is impossible to
construct the partial derivative of the apparent resistivity from the capacity matrix derived from the standard
finite-element method (Appendix A). For this reason, we adopt a new concept of an apparent electric field
rather than apparent resistivity.

On the basis of the fact that the vertical electric field Ez = 0 at the flat ground surface (from the boundary
condition in Eq. (2)) and that the horizontal electric field Ex can be approximated by DV/Dx if Dx is suffi-
ciently small, we define the apparent electric field Ea as
Fig. 4.
and (c
Ea ¼ ExGx; ð8Þ

where Gx acts as weighting function (having a similar effect as the automatic gain control in seismic data pro-
cessing) at the ground surface. Selecting the appropriate weighting function (Gx) in Eq. (8) is subjective
manner. For convenience, we modify the geometric factor into that which is conventionally used in a
three-dimensional diploe–dipole survey. The modified weighting function Gx can be given as
Gx ¼ pnðnþ 1Þa.

Figs. 4(b) and (c) show apparent resistivities and horizontal components of apparent electric fields computed
for the two-layer model as shown in Fig. 4(a). By comparing Fig. 4(c) with (b), we found that the horizontal
components of apparent electric fields have similar features to apparent resistivities.
a

b c

(a) Dipole–dipole array in two-layer earth model whose size is 1 km · 0.2 km and electrode interval is 25 m, (b) apparent resistivity
) apparent electric field.
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4. Inversion theory

4.1. Misfit function

In our resistivity inverse problem where the steepest descent method is used, we define the residual between
the forward-modeled electric field vector and the finite-difference approximated electric field vector derived
from measured voltage as follows:
dex ¼ e1x �
Dv1obs
Dx

� � � enx �
Dvnobs
Dx

� �T

; ð9Þ
where n is the number of receiver position, and for j = 1, . . .,n, ejx is the horizontal component of the electric
field vector computed for the current model, Dvjobs is the measured voltage, Dx is the intervals between elec-
trodes grounded for measuring voltage. By parameterizing the subsurface by finite elements, we can identify
the resistivity or conductivity at each element. In our algorithm, the model is characterized by the resistivity
parameter vector q = (q1, . . .,qM)T, whereM is the number of model parameters. As with general inverse prob-
lems, we define the objective function W as the l2-norm of residuals between the measured electric field vector
and the modeled electric field vector:
WðqÞ ¼ 1

2
e1x �

Dv1obs
Dx

� � � enx �
Dvnobs
Dx

� � G1
x 0 0 0 0

0 G2
x 0 0 0

0 0 ..
.

0 0

0 0 0 0 Gn
x

0BBBBB@

1CCCCCA
e1x �

Dv1
obs

Dx

..

.

enx �
Dvn

obs

Dx

0BBB@
1CCCA; ð10Þ
where Gj
x is given by Eq. (8) for j = 1, . . .,n.

4.2. The steepest descent method

When using the steepest descent method, we iteratively update the model parameter using the following
relationship as follows:
qlþ1
k ¼ ql

k � al
oWl

oqk
; k ¼ 1; . . . ;M ; ð11Þ
where l is the iteration number and al is the step length arbitrary chosen and oWl/oqk is the direction perpen-
dicular to the contours of the constant objective function.

The gradient oWl/oqk in Eq. (11) can be computed directly by calculating the partial derivative of
apparent electric field with respect to resistivity. Following Rodi [24], Oristaglio and Worthington [18],
and Pratt et al. [23], we can express the partial derivatives of the apparent electric field vector and electric
potential as
oK

oqk
uþ K

ou

oqk
¼ 0;

ou

oqk
¼ �K�1 oK

oqk
u.

ð12Þ
In Eq. (12), we can define the kth virtual source as
fðkÞ ¼ � oK

oqk
u. ð13Þ
Fig. 5 shows the partial derivatives where the virtual source is located at the center of the model and the
source lies at the center of the ground surface. The steepest descent direction of our objective function can
be expressed as



Fig. 5. (a) The Fréchet derivative oV/oqi of electric potential, (b) the Fréchet derivative oEx/oqi of horizontal component of vector field,
(c) the Fréchet derivative oEz/oqi of vertical component of vector field, where we perturb the conductivity at the center of the model.
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oW
oqk

¼

G1
x 0 0 0 0

0 G2
x 0 0 0

0 0 ..
.

0 0

0 0 0 0 Gn
x

0BBBBB@

1CCCCCA
oe1x
oqk

..

.

oenx
oqk

0BBB@
1CCCA

2666664

3777775
T

e1x �
Dv1

obs

Dx

..

.

enx �
Dvn

obs

Dx

0BBB@
1CCCA

¼ oe1x
oqk

� � � oenx
oqk

� � G1
x 0 � � � 0

0 � 0 0

0 0 � 0

0 0 0 Gn
x

0BBB@
1CCCA

de1x

..

.

denx

0BB@
1CCA; k ¼ 1; . . . ;M ; ð14Þ
where dejx ¼ ejx � Dvjobs=Dx; j ¼ 1; . . . ; n. By augmenting zeroes to Eq. (14), we can express oW/oqk as
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oW
oqk

¼ oe1x
oqk

� � � oe
N
x

oqk

oe1z
oqk

� � � oe
N
z

oqk

ov1x
oqk

� � � ov
L
x

oqk

� �
G1

x 0 � � � 0 � � � 0 0 0

0 � 0 0 0 0 0 0

0 0 � 0 0 0 0 0
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x 0 0 0 0

0 0 0 0 0 0 0 0
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.

0 0 0 0 0 0 0 0
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1CCCCCCCCCCCCA

de1x

..

.

denx
0

..

.

0

0

..

.

0

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

; ð15Þ
where N is the number of electric field vector, L is the number of electric potential. By following Pratt et al.�s
notation [23], we again write Eq. (15) as
oW
oqk

¼ eG ou

oqk

� �T

dee; ð16Þ
which
eG ¼

G1
x 0 � � � 0 � � � 0 0 0

0 . .
.

0 0 0 0 0 0

0 0 . .
.

0 0 0 0 0

0 0 0 Gn
x 0 0 0 0

0 0 0 0 0 0 0 0

..

.

0 0 0 0 0 0 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

ou

oqk
¼

oe1x
oqk

..

.

oeNx
oqk

oe1z
oqk

..

.

oeNz
oqk

ov1x
oqk

..

.

ovLx
oqk

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

; d~e ¼

de1x
� � �
denx
0

� � �
0

0

� � �
0

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
;

and eG is (2N + L) · (2N + L) diagonal matrix, ou/oqk and d~e are (2N + L) · 1 vectors. Taking the transpose
of Eq. (12) and substituting Eq. (12) into Eq. (16) give
oW
oqk

¼ ½K�1fðkÞ�T eGdee ¼ fðkÞ
T½K�1�T eGdee ¼ fðkÞ

T
K�1 eGdee� �

; k ¼ 1; . . . ;M ; ð17Þ
where (K�1)T = K�1 (because K is symmetric). Since K is self-adjoint, the term K�1 eGdee depicts the backprop-
agation of residuals of apparent electric fields. As a result, oW/oqk can be obtained by the dot product between
the virtual source f(k) and the backpropagated residual K�1 eGdeE in Eq. (17).

By substituting Eq. (17) into Eq. (11), we obtain the following equation:
qlþ1
k ¼ ql

k � alfðkÞ
T

K�1 eGDee� �
; k ¼ 1; . . . ;M . ð18Þ
In parameterizing the conductivity or logarithm of the resistivity or conductivity [30], the steepest descent
direction will be in a similar form as Eq. (18) (Appendix B). If we use the Levenberg–Marquardt method
[15] for introducing a damping term to regularize the steepest descent method, Eq. (18) should be rewritten
as
qlþ1
k ¼ ql

k � al½diagðHa þ kIÞ�1�kf
ðkÞTðK�1 eGDeeÞ; k ¼ 1; . . . ;M ; ð19Þ
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where [Æ]k denotes the kth element of the diagonal components, I is the identity matrix, k is the damping factor,
and Ha is the Hessian, which can be approximated by Ha � diag(JTJ) [11,27]. In our algorithm, we replace the
diagonal of the Hessian by a pseudo-Hessian proposed by Shin et al. [28].

4.3. Advantage of our proposed technique over the conventional Gauss–Newton method to DC problem

In calculating the steepest descent direction of the object function W, Yi et al. [32], Tripp et al. [31] and
Zhang et al. [36] calculated the Jacobian using the reciprocity of Green function. However, their approach
required a great deal of saving, especially all of the Green functions, corresponding to source and receiver po-
sition, onto the hard disk or in computer memory. Suppose that n is the number of grid in the x, z or y (in
three-dimensional case) directions. The total core memory needed to save Green�s function for computation
of partial derivative is 4mn2 byte memory for a two-dimensional problem, whereas 4mn3 byte memory for a
three-dimensional problem, where m is the number of sources and receivers which are not overlapped. To the
contrary, our technique needs only 8n2 byte memory in two-dimensional problem and 8n3 byte memory in
three-dimensional problem, for saving both the backpropagating electric vector and forward-modeled vector.
The operation counts for both techniques required to compute the steepest descent direction show almost the
same (Appendix C). However, in case of the reciprocity approach we will encounter insurmountable overhead
computing cost, in particular, for large scale three-dimensional problems because of memory or disk access
latency in computing the partial derivative using the reciprocity theorem. Therefore, our approach has a great
advantage over the reciprocity approach, in terms of computing cost, even though it provides the same oper-
ation counts for the computation of the steepest descent direction.

5. Numerical results

In order to examine our electric inversion algorithm for synthetic data, we take two simple two-dimensional
models, which one is the model (model I) with a conductive body embedded in the homogeneous half space
and the other is the model (model II) with two conductive bodies embedded in the homogeneous half space.
The partial derivatives of apparent electric field with respect to the resistivity block qB can be obtained by
oEa

oqB

¼
X
ði;jÞ2B

oEa

oqði; jÞ .
For stop criterion, the RMS error r(l) for iteration number l can be defined as
rðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
WlðqÞ
N

s
;

where N is the sum of the numbers of resistivity parameters and dipoles with sources and receivers. We stop
the iteration when r(l)/r(1) is less than 0.2 for cell parameterization and 0.1 for block parameterization. We
experimented the inversion of synthetic data by both cell and block parameterization.

5.1. Model I: a rectangular block embedded in a homogeneous half space

The sizes of the surrounding homogeneous space and the conductive block are 720 m · 180 m and
200 m · 80 m, respectively (see Fig. 6(a)). The resistivities of the surrounding half space and the conduc-
tivity body are 500 and 50 Xm, respectively. The electric resistivity inversions are experimented with 40
dipole–dipole array (electrode spacing 20 m). For the initial model, we use a homogeneous model of resis-
tivity of 500 Xm. Figs. 6(b) and (c) show the results inverted by the inversion algorithm using the back-
propagation technique with a cell (whose size is 2 m · 2 m) and a block (whose size is 10 m · 10 m),
respectively. Fig. 6 shows that when we use a small-size cell, we can obtain a smooth structure (because
we have more unknowns than those of the block parameterization). From Fig. 6(c), we confirm that our
inversion algorithm gives results compatible with the original structure even though we start from a homo-
geneous model.



Fig. 6. (a) Two-dimensional true model used for resistivity inversion where the conductive block is located in 40 m depth from the earth
surface, (b) the inverted result at 2274th iteration by the inversion algorithm by using backpropagation with the resistivity cell of 2 m · 2 m
and (c) the inverted result at 1001th iteration with the resistivity block of 10 m · 10 m.
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5.2. Model II: two rectangular blocks embedded in a homogeneous half space

The sizes of the surrounding homogeneous space and the two conductive blocks are 1000 m · 200 m
and 176 m · 80 m, respectively (see Figs. 7–9(a)). The resistivity of the surrounding half space is
500 Xm, whereas the resistivity of the left conductivity body is 50 Xm and the resistivity of the right
conductivity body is 150 Xm. The electric resistivity inversions are experimented with 56 dipole–dipole ar-
ray (electrode spacing 20 m), 27 dipole–dipole array (electrode spacing 40 m), 18 dipole–dipole array (elec-
trode spacing 60 m), 13 dipole–dipole array (electrode spacing 80 m) and 11 dipole–dipole array (electrode



Fig. 7. (a) Two-dimensional true model used for resistivity inversion where both conductive blocks are located at a depth of 40 m from
earth surface, (b) the inverted result at 1843th iteration by the inversion algorithm by using backpropagation with the resistivity cell of
2 m · 2 m, (c) the inverted result at 2004th with the resistivity block of 10 m · 10 m and (d) the resistivity according to a depth at 300 m
point (left figure) and 660 m point (right figure).
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spacing 100 m). For our inversion, we independently invert each experimental data and then averaging the
inversion results obtained by each experiment. Our initial model is a homogeneous half space of resistivity
500 Xm.

Figs. 7–9(a) show the true models used for our resistivity inversion. Figs. 7–9(b) display the results
inverted by cell (whose size is 2 m · 2 m) parameterization of our algorithm, while Figs. 7–9(c) depict
the inverted models by block (whose size is 10 m · 10 m) parameterization of our algorithm. Lastly, Figs.
7–9(d) show the resistivity profile as a function of depth at at 300 m point (left figure) and 660 m point
(right figure). In these figures, the dashed line represents the resistivity profile of the true model, the



Fig. 8. (a) Two-dimensional true model used for resistivity inversion both conductive blocks are located at a depth of 80 m from earth
surface, (b) the inverted result at 2270th iteration by the inversion algorithm by using backpropagation with the resistivity cell of
2 m · 2 m, (c) the inverted result at 2970th iteration with the resistivity block of 10 m · 10 m and (d) the resistivity according to depth at
300 m point (left figure) and 660 m point (right figure).
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dotted corresponds to the resistivity profile by cell (2 m · 2 m) parameterization and the dotted dashed
line corresponds to the resistivity profile by block (10 m · 10 m) parameterization. We know that with
the inversion of small cell perturbation we can detect well enough the top of the conductivity bodies
below the surface, but for the one far away from the surface we may not estimate the depth of bottom
of the conductivity bodies. In case of block parameterization, we can have better delineation of the top
and bottom of the conductivity bodies than the cell parameterization, regardless of the depth of the con-
ductivity bodies.



Fig. 9. (a) Two-dimensional true model used for resistivity inversion where one conductive block (left side) is located at a depth of 40 m
from earth surface and the other (right side) is located at a depth of 80 m from earth surface, (b) the inverted result at 2518th iteration by
the inversion algorithm using backpropagation with the resistivity cell of 2 m · 2 m, (c) the inverted result at 2371th iteration with the
resistivity block of 10 m · 10 m and (d) the resistivity according to depth at 300 m point (left figure) and 660 m point (right figure).
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6. Conclusions

We have proposed a new technique for inverting dc data in a similar way as it was done for the seismic
waveform inverse problem using a backpropagation algorithm. In order to incorporate the backpropagation
algorithm into the electric resistivity inverse problem, we used the electric field vector rather than apparent
resistivity or electric potential difference, and had to use a mixed finite-element method with a P1 � P0 trian-
gular element in order to maintain the adjoint state of the Poisson equation and to backpropagate the electric
field vector and electric potential instead of electric potential difference.
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Since exact electric field vector cannot be directly measured in field exploration, we define an apparent
electric field as the dot product between the numerically computed electric field (DV/Dx) and a weighting
factor. The weighting factor plays a role of compensating attenuation caused by geometrical spreading.
In our algorithm, the objective function is defined as the l2-norm of residuals between the apparent electric
fields computed for the initial model and the observed field data, while the steepest descent direction is com-
puted by the product between virtual source and backpropagated residuals without computing the partial
derivative directly. Therefore, our method has the advantage in that reduces its core memory to save
Green�s function and computing cost over the conventional Gauss–Newton method, even though the oper-
ation count of our method is nearly same to that of the method using the reciprocity theorem.

In our inversion algorithm, there is a wide choice of parameterization methods that vary from cell to block.
From our numerical tests, we have noted that the inversion algorithm using backpropagation technique pro-
vides more lesser computation time and memory. In particular, we can obtain the good subsurface images
through either the blocky cell parameterization or the small cell parameterization. The inversion with irregular
topography or with anisotropic media demands an extensive future study.
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Appendix A. Why is it impossible to construct the partial derivative of the apparent resistivity from the standard

finite-element method?

Let model parameter p be (p1, . . .,pM), the apparent resistivity measured at n receiver points qd
a and the

apparent resistivity calculated by the initial model qm
a . We define the misfit function W by l2-norm of errors

of apparent resistivities:
WðpÞ ¼ 1
2
ðqd

a � qm
a Þ

Tðqd
a � qm

a Þ. ðA:1Þ

In the inversion algorithm using the steepest descent method, we try to find model parameter p to minimize W.
The gradient of the objective function with respect to model parameter pi can be expressed as
oW
opi

¼ oqm
a

opi

� �T

ðqd
a � qm

a Þ. ðA:2Þ
From Eq. (6), the partial derivative of qm
a with respect to pi is expressed as
oqm
a

opi
¼ G

I
oDV
opi

; ðA:3Þ
where oDV
opi

can be obtained by numerical difference.
The capacity matrix arisen from the standard finite-element or finite-difference method can be given as [38]
Sv ¼ f; ðA:4Þ

where S is the capacity matrix, v is the electric potential and f is a source. If we differentiate both sides of ma-
trix equation (A.4) with respect to pi, then we obtain
oS

opi
vþ S

ov

opi
¼ 0; ðA:5aÞ

ov

opi
¼ �S�1 oS

opi
v. ðA:5bÞ
FromEq. (A.5), we can see that ov
opi

is not Fréchet derivative of electric potential difference (DV), as given in (A.3),

but only Fréchet derivative of electric potential (v). Because of this property of the standard finite-element or
finite-difference method for Poisson�s equation, we cannot implement the backpropagation technique of seismic
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waveform inversion to the conventional finite-element or finite-difference method in an electric resistivity inver-
sion scheme.

Appendix B. The steepest descent direction with respect to the conductivity or logarithm of the resistivity or
conductivity

When we parameterize the conductivity, we replace q by 1/r. Therefore Eq. (1b) becomes to
Table
Compa

Green�
Jacobi
Gradie
Total n
rV ðx; zÞ ¼ � 1

rðx; zÞEðx; zÞ; ðB:1aÞ

r � Eðx; zÞ ¼ I sðx; zÞ. ðB:1bÞ
By similar argument in Sections 2 and 4, we obtain the same form as Eq. (17). Here the capacity matrix K is
calculated with Eq. (B.1).

In taking the logarithm of the resistivity or conductivity, we know that
oE

o ln q
¼ 1

q
oE

oq
or

oE

o lnð1=rÞ ¼ �r
oE

or
.

As a result, Eq. (18) becomes to
ln qlþ1
k ¼ ln ql

k � al
1

ql
k

½fðkÞTðK�1 eGDeeÞ�; ðB:2aÞ

ln rlþ1
k ¼ ln rl

k þ alrl
k½f

ðkÞTðK�1 eGDeeÞ�. ðB:2bÞ
Appendix C. Operation counts

Let n be the number of grid in x or z directions in a computational domain. We consider the operation count
of computing the steepest descent direction by applying the reciprocity theorem for only two-dimensional
problem, since the extension to the three-dimensional problem is straightforward. With the assumption that
we factor a sparse capacity matrix by a standard bandtype solver, the operation count of backward and forward
solution phase for each sparse right-hand side vector is 2n3 [10]. Since both source and receiver are locally
placed for the optimal acquisition of the field data, we only computed the Green function corresponding to
the source and receiver positions. Then the total operation count for the computation of entire Green�s function
is 2mn3, where m is the number of source and receiver positions which are not overlapped.

The operation count for calculating the partial derivative using the reciprocity theorem is m2n2. The oper-
ation count for computing the steepest descent direction from the partial derivatives is m2n2. Therefore, the
total operation count of the approach of the reciprocity theorem is 2(n + m)mn2. However, our technique
showed to need 4mn3 operation for both forward modeling and backpropagation step. In practice, the differ-
ence in the operation counts between the reciprocity approach and our backpropagation technique is negligi-
ble (Table C.1).
C.1
rison of the operation count between reciprocity approach and our backpropagation technique, in the two dimensional problem

Reciprocity technique Backpropagation technique

s function 2mn3 Forward modeling 2mn3

an m2n2 Backpropagation 2mn3

nt m2n2

umber 2(n + m)mn2 Total number 4mn3
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